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ABSTRACT

The pushback estimates are defined by a prel-

ininary data modification followed by the applica-

tion of a robust statistic to the modified data.

The form of the pushback estimate depends upon the

choice of a scale estimate for the original data,

a set of central values of order statistics, and a

constant multiplier. Particular forms of the

pushback estimates are both simple and perform rather

well relative to a good estimate in the w-estimate

or M-estimatr category.
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1. Introduction.

We have some quite good estimates of location in the

w-estimate and M-estimate category. The pushback estimates

are another category of estimates -- one that appears very

different -- that satisfies two requirements. First, the

pushback estimates of a certain form perform well over a

wide range of distributions. Second, the estimates are

relatively simple to understand and use.

Monte Carlo studies indicate that a well-chosen form of

the pushback achieves a maximin efficiency (relative to the

w6-biweight) of 89% for sample size 20. This performance is

measured over the set of distributions including the Gaus-

sian, one wild Gaussian, mixture, slacu, and slash.

2. The pushback.

The pushback procedures are based on preliminary data

modification. The order statistics of the data are modified

before a simple robust estimate of location is applied.

More formally our procedure is as follows; Suppose we are

given n observations,

Y1 ' Y2? "'' Yn

from a particular situation {fi: i=l, ... , n} where the fi

are location-scale densities. The situation may be either

simple or compound (Bruce, Pregibon, Tukey (1981)). The

procedure modifies the order statistics of the n observations
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y(l), y(2), ... ,y(n)

by subtracting some function of i, p(i),

y(l)-p(1), y(2)-p(2), ... , y(n)-p(n)

The form of p(i) considered is:

p(i) = k-s-a(i)

where k is a constant, s is an estimate of the scale of the

data {y(i)} and fa(i)} is a set of central values of order

statistics from a suitable unit distribution. We then apply

T, a robust estimate, to the set {y(i)-k-s-a(i)} to deter-

mine a location estimate for the distribution of the {y(i)}.

We will call this procedure the pushback T when the

estimate T is applied to the modified data, or pushback when

we have no particular estimate in mind. The pushback was

previously studied by L. Nanni (Nanni (1979)).

3. Simulation Cases.

Various forms of

* the location estimate

* the central order-statistic values

* the scale estimate

2
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The subscript j denotes the number of the iteration. Itera-

tion to tolerance is stopped when ITj-TjI < .0005 or when

j=20, whichever occurs first.

Central values of order statistics for a sample of size

n from a Gaussian, logistic, and a cosine-bell distribution,

each with mean zero and variance one, were used. For the

Gaussian and logistic distributions, expected values of

( order statistics were chosen as the central value ((Owen

(1962)) and (Birnbaum and Dudman (1963)). For the cosine-

bell density,

'2_2 on -w

\1128 \1,2-8 on__

2 2 Co (Y 2 \1w2_8 \I2-8

0 otherwise

the values F ( were used. F- (-) has been shown
n+-y n+.L

3 3

to be a good approximation to the median of y(i). Letting

a(i) Gaua(i)log, and a(i)co b denote the central value of the

i order statistic from a Gaussian, logistic, and cosine-

bell distribution, respectively, and noting that a(i) =

-a(n+i-1) because of symmetry, we see in table 1 that

II4I I , _ .. "
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ia(i)Gauj < la(i)cobI i=2, ... , 19

ia(i)GauI > ia(i)logl

Ia(i)Gaul > a(i)cobl i=,20
Ia(i)GauI < la(i)logI•

The differences between the Gaussian {a(i)} and the two

other sets of {a(i)} can be seen in the plot of log aQ(j)

against log aGau (i) (figure 1) for Q={log,cob}.

Many scale estimates were tested. These included the

median jump ratio, the median absolute deviation, and vari-

ous other percentage points of {ly(i)-med{yi}l}. The median

jump ratio (MJR) is defined as

med {y (n- i+l) -ya(i)}

n a(n-i+l)-a(i)

when n is even, as is the case for the simulations discussed
here. The MJR used the same {a(i)} as are used in pushing

back the data and is thus matched to the specific pushback

form. The median absolute deviation from the median (MAD)

is defined as med{iy(i)-med{y(i)}l, i.e., the 50% point of

{(y(i)-med{y(i)}I}. Other percent points of {ly(i) -

med(y(i))I} were used. The complete set of lower percentage

points was P= 37.5,45,50,55,70,75,80,85, and 90. For exam-

ple, the 45% point is z(9) where {z(i)} are the ordered set

{(y(i)-med{y(i)}}. We will refer to P% point of {ly(i)-

med{y(i) }I} as P%AD.
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In order to evaluate the performance of the pushback in

its various forms, data were simulated from six situations.

The situations and their densities for simple and compound

situations are:
12

Gaussian (Gaus) -exp{-(y) 2/2} = G(0,1)\12w

slash (slash) = ratio of an independent Gaussian
to unif(0,1)

1 12
[1-exp{- y }] for y ' 0

\If2ir2

1 for y = 0

2\12w

Cauchy (Cauchy) 2

W' (i+y2)

one wild Gaussian, scale 10 (OWG) (n-l)G(0,1) + 1G(0,100)

mixture, scale 10 (mix) .95 G(0,1)+.05G(0,100)

slacu (slacu) = ratio of independent Gaussian to

(unif(0,i)) 1/3

4 6 (-exp{-y 2 /2} - 3-2 ep{-y 2/2}

y \12 \I TV-y /

The six distributions above include the "three corners", 
the

Gaussian, slash, and one-wild 
Gaussian. Each of these three

represents one extreme of a data type we regard 
as likely to

be encountered in practice. Gaussian data is considered to

*be extremely "nice" data and is the norm against which we

0.1 judge data from other distributions, for example, saying
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data is from a distribution with "heavier tails" than the

Gaussian. One-wild Gaussian (scale 10) data has one obser-

vation from a Gaussian distribution with mean zero and vari-

ance 100 and the rest from a standard Gaussian and so, is

very likely to have one outlier. The slash density behaves

as the Gaussian does in the middle and as the Cauchy does in

the tails. The first part of this statement can be seen by

looking at

lim 1 (1-exp(-Iy2
y .0 \ 2-Ny 2  2

12which is, ignoring multiplicative constants, exp(-;.y ), the

form of the Gaussian density. Similarly, the second part of

the statement is seen by looking at

I 1 1 2 I
lim and lim I (l-exp(-y 

yj -0 yT -0o 1\I2wy

-2
This shows that the slash tail-density decreases as y , as

does the Cauchy. Thus the slash satisfies the empirical

observation that data is usually Gaussian in the middle,

while having much longer tails than the Gaussian. The three

corners are good quantitative standards against which to

seek good performance.

The remaining three densities have been included to

gain further information. The Cauchy is included in order

to understand how the pushback works on data from a long-

tailed but peaked distribution. We expect, however, to

encounter Cauchy-like data rarely in practice, and, thus, do
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not seek good performance against the Cauchy. The mixture

at scale 10, because it is a milder form of the one-wild

Gaussian at scale 10, gives information on the transition

from the Gaussian to the OWG. The tail-density of the slacu

decreases as t 4 in comparison to the slash tail-density

which decreases as t 2 . The slacu tail-density is like a t3

tail-density. (Note that t3 tends to behave like 15G(0,1) +

5G(0,9) (F. Hampel (1979))). These facts indicate that the

slacu should give us information on the transition from

G(0,1) to slash and, in a less clear way, on the transition

from G(0,1) to a mixture-like density.

Cases for which the simulations were performed are

listed in table 2. All are for sample size twenty. Vari-

ances were calculated using a swindle (G. Simon (1975)) and

are based on 500 samples. The computations discussed here

were done on the Statistics Department PDPII/40. Gaussian

samples were generated via an algorithm due to Forsythe and

Ahrens-Dieter (J. H. Ahrens and U. Dieter (1974)). Uniform

random numbers were generated using Knuth's algorithm M

(Knuth (1969)).

7i

Ii



Table 2

Simulation Cases

mjr-gaus-g;c( .8, 1.0, 1.2);;sl( .4,.8, 1.0, 1.2)
(.4, .8, 1.0, 1.2, 2. 0);w( .4,.8, 1.0, 1.2)

mjr-log-g;c;sl;m;w( .8,1,0,2.2)
mad-gaus-g;c;sl;m;w(.8,1.o,l.2) ,((.4,.8,1.2,2.O)/.6745)
mad-log- o

* mjr-gaus**- t
e mjr-log*-
d mjr-cob-g;c;sl;m;w;su( .4, .8,1.0)
i mjr-gaus***- 19I
a 37.5%AD-gaus--g;c;sl;m;w;su( .4, .8,1.0,1.2)
n 45%AD-gaus-
55%AD-gaus-
70%AD-gaus-
75%AD-gaus-
80%AD-gaus-
85%AD-gaus-
90 %AD-gaus-

mjr-gaus-g;c;sl;m;w;su(.4,.8,1.0,1.2,2.0)
mj r-log-
mjr-gaus*-

w mjr-gaus**-
6 mjr-log*-
Imad-gaus-g;c;sl;m;w( (.4, .8, 1.0,1. 2, 2.0)/.6745)

b mad-log-
i mjr-cob-g;c;sl;m;w;su( .4, .8,1.0)
w mjr-gaus***- o
e 37.5%AD-gaus-g;c;sl;m;w;su( .4, .8,1.0,1.2)
i 45%AD-gaus-
g 55%AD-gaus-
h 70%Ad-gaus-
t 75%AD-gaus-
80%AD-gaus-
85%AD-gaus-
90 %AD-gaus-

9 mjr-gaus-g(.4, .8,l.0,l.2);c(.8,l.0,l.2);sl(.4, .8,1.0,1.2);
I m;w(.8,l.0,1.2);su(.4, .8,1.0,1.2,2.0)

b mjr-log-g;c;sl;m;w( .8,l.0,1.2);-su(.4, .8,1.0,1.2,2.0)
i mad-gaus-g;c;sl;ui;w( .8,1.0,1.2)
w mad-log-
e mjr-gaus*-g;c; Sl;m;w;su( .4, .8,1.0,l.2,2.C)
i mjr-gaus**-
g mjr-log*-
h
t

*1 smooth
**2 smooths

***pushback on inner 16 only
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4. Discussion of the Simulation Results

The results of the simulation cases listed in table 2

are given in figures 2-9 and in tables 3 and 4. For exam-

ple, the results of the simulations for the first line in

table 2 are given in figure 2. The scale estimate is MJR,

the {a(i)} are the central order-statistic values from a

Gaussian, the location estimate is the median, and the simu-

lations were done for various k-values for Gaussian, Cauchy,

slash, mix, and OWG data distributions. For ease of nota-

tion, we will refer to this pushback form as the MJR-Gaus-

pushback median. In general, we refer to a scale estimate -

{a(i)} distribution-pushback location estimate, the k-value

and data-distribution being specified when necessary.

In figure 2, the first number listed at each k-value,

data-distribution combination is the variance of the MJR-

Gaus-pushback-median. The variance of this variance esti-

mate is shown in parentheses here as it is in the similar

figures which follow. The data-distribution is represented

by the angle of the arc on the set of concentric circles and

the k value is indicated by the circle radius. The inner

circle contains values for a non-pushback estimate. For

example, .0731 is the estimated variance of the median when

the data is Gaussian.

Figure 2 also gives the MJR-logistic-pushback median

variances. These values are the second entry in the figure.
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.791(33618)
.787(32657)

726(35790)
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08
.549(17309)
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.016( 1)
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Figure 2: Variance and variance of varilince x 10
(in parentheses) of MJR-Gaus-pushback
median and MJR-log-pushback median
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Similarly, the MJR-Gaus- and MJR-logistic-pushback w6-

biweight and 9-biweight variances are given in figures 3 and

4, respectively.

Table 5 shows the optimum k-value (the k-value with

minimum variance) and the corresponding optimum variance for

a given scale estimate, {a(i)} distribution, location esti-

mate and data distribution. From table 5 and figures 2-4,

we see the following:

* First, for MJR and each of the median, w6-biweight,

and 9-biweight the variance at the optimum k-value for

the Gaussian is less than that at the optimum k-value

for the logistic {a(i)}.

* Second, for each of the location estimates, the simu-

lations indicate that the optimum k-values for a given

data-distribution for the the logistic and Gaussian

{a(i)} versions of the pushback with s = MJR are the

same.

* Also, looking at lines 1, 15, and 29 of table 5, we

see that the median and w6-biweight have less-changing
the

optimum k values across distributions than/9-biweight.

Approximately equality of k-values for the different

distributions is of importance in its effect on the compari-

son of pushback and a known optimal estimate. We see this

comparison in plots of the relative efficiency of pushback

to a known good estimate, say w6-biweight, against the log
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of the pushback constant, log k. Consider

E = max{minfrel effl}
k Q

where Q is the set of distributions specified, as a measure

of the performance of the pushback. Approximately equal

optimum k-values across distributions will help to keep E

high by preventing the relative efficiency plot for one or

more distributions from plunging while the other plots

remain high.

Clearly, investigation into the effect of a particular

scale estimate and {a(i)} distribution is necessary for tun-

ing and understanding of the procedure. We first consider

alternative scale estimates. Figure 5 shows the MAD-Gaus-

pushback median variances and the MAD-logistic-pushback

median variances, in that order. (Some of the k values

shown here are approximate. Each of .4, .8, 1.0, 1.2, and

2.0 is divided by .6745 and the rounded values .6, 1.2, 1.5,

1.8, and 3.0 are shown in figure 5.) Figures 6 and 7 show

similar results for w6-biweight and 9-biweight, with figure

6 again showing approximate k-values. From these values and

those in table 5, we see again that the variances when Gaus-

sian {a(i)} are used are better than or very close to the

variances when logistic {a(i)} are used.

Given the results discussed above, that when s = MAD or

MJR, and for the median and w6-biweight, Gauss~.;, {a(i)}

yield procedures which generally have smaller variances than
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those in which logistic {a(i)l are used, we consider a third

form of {a(i)}, cosine-bell {a(i)}. Figures 8 and 9 give

results for the MJR-cob-pushback median and w6-biweight.

Table 5 shows smaller variances for cosine-bell {a(i)l than

for Gaussian {a(i)} at optimum k-values, but that the

optimum k-values for the cosine-bell {a(i)} are more spread

than those for Gaussian {a(i)}. Figures 10 and 11 show

plots of the relative efficiency of the pushback to w6-

biweight against the log pushback constant, ln k, for the

MJR-Gaus-pushback median (Figure 10) and the MJR-cob-

pushback median (Figure 11). Relative efficiency is again

(variance w6-biweight)/ (variance pushback) for the particu-

lar form of the pushback being studied. The cosine-bell

version has a slightly higher maximin relative efficiency

(82% vs. 81%). In both cases, however, the slash curve

keeps the values low by not attaining its maximum at a value

of ln k near the maximizing ln k of the other distributions.

Since cosine-bell and Gaussian {a(i)} have very close per-

formance, we will continue testing with the more readily

accepted norm, the Gaussian case.

Returning to our comparison of scale estimates, we look

at the results for P%AD-Gaus-pushback median and P%AD-Gaus-

pushback w6-biweight where P%AD is the scale estimate

defined as the value at the lower P percent point of the

absolute deviations from the median, [ly(i)-med{y(i)}I}.

The P values used were 37.5, 45, 50 (i.e., the MAD), 55, 70,

75, 80, 85, and 90. The variances for these pushback forms
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are shown in tables 3 and 4 for the P%AD-Gaus-pushback

median and P%AD-Gaus-pushback w6-biweight, respectively.

Figures 12-20 show relative efficiency plots for the P%AD-

Gaus-pushback median against ln k, where relative efficiency

is again defined with respect to the w6-biweight. The fol-

lowing table shows the values of max{min(rel eff)} for the
k Q

various values of P used in P%AD.
P used in P%AD

as scale estimate max{min(rel eff)}

37.5 80

45 85

50 88

55 89

70 83

75 83

80 72

85 54

90

For each pushback listed in the table, Gaussian {a(i)} were

used. We see that the pushback with s = 55%AD performs well

in comparison to w6-biweight, achieving 89% or higher rela-

tive efficiency for all distributions considered.
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Figure 14 Efficiency (relative to w5-biweight)
of MAD-Gaus-pushback median vs. in k
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5. Conclusions from the Simulations

The results described in section 4 and the requirement

of simplicity of the pushback procedure provide preliminary

answers to the following question:

What choices of

6 location estimate,

4 t scale estimate, and

* {a(i)) distrubution

yield good performance for the associated pushback pro-

cedure while still maintaining its simplicity?

Gaussian {a(i)} were shown to perform better than

logistic {a(i)} for s = MJR, and MAD with T = median, and

w6-biweight. The Gaussian central order-statistic values

also were shown to have performance very close to that of

cob fa(i)} for s = MJR with T =median. We choose Gaussian

{a(i)} as the central order-statistic values because of

their performance and the wide acceptance of Gaussianity as

the norm against which we judge other distributions.

The extensive simulations were done for T = median

rather than T = w6-biweight or 9-biweight because of a

preference for simplicity in procedure. Also, since the

w6-biweight exhibits good performance, it is unlikely that

modifications of it will have marked decreases in variance
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(see table 5).

The scale estimate s = 55%AD, when used with T = median

and Gaussian [a(i)} achieves > 89% of the efficiency of the

w6-biweight (Figure 15). This relative efficiency is higher

than those for the other scale choices tested when used with

Gaussian fa(i)} and the median as the location estimate.

What the conclusions indicate then is, first, that

Gaussian {a(i)} are a good form of central order-statistic

values. This is because most data are Gaussian in the

center. This choice makes it possible to find a line of the

form z(i) = k.s-a(i), where s = P%AD, which is parallel to

the central P% of the data. The value of P will depend on

the sampling situation. Second, we see that a good choice

of scale estimate is the P%AD where P=55. This choice is a

maxi-min choice since our criteria for performance is that

the five distributions, Gaussian, OWG, mix, slash, and

slacu, all exhibit good performance at the same value of k

using this choice of s. The residuals of the data from the

line specified by these choices of s and {a(i)} are then

well-enough behaved for each of the five distributions that

the media applied to these residuals, the pushback median,

achieves good performance relative to the w6-biweight.

The simulation conclusions discussed thus far are based

on overall descriptions of the behavior of the pushback pro-

cedures. Variances based on the 500 samples of size 20 for

the various pushback procedures are compared as are the
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efficiencies relative to w6-biweight.

We would like to look at the behavior of a specific

pushback for particular data configurations in order to both

understand the procedure and to fine-tune the procedure. To

do this we need the optimum estimate for the particular data

configuration. Then identifying data configurations where

the pushback performs poorly in comparison to the optimum

estimate may indicate the tuning necessary to improve the

4 performance of the procedure. We would also like to deter-

mine the minimum attainable variance for a particular sam-

pling situation and the maximum attainable polyefficiency

over several sampling situations in order to determine effi-

ciencies relative to this optimum. Configural sampling and

configural polysampling provide a method for achieving the

analysis discussed in this paragraph. The post-configural

polysampling pushback results are discussed in (Krystinik

(1981)).



- 42 -

REFERENCES

Ahrens, J.H. and Dieter, U. (1974). "Computer methods for

sampling from gamma beta, poisson and binomial

distributions, Computing, 12, 225-227.

Birnbaum, A. and Dudman, J. (1963). "Logistic order

statistics," Annals of Mathematical Statistics,

34, 658-663.

Bruce, A., Pregibon, D., and Tukey, J.W. (1981).

"The second representing function for compound

situations," Technical Report No. 186, Series 2,

Department of Statistics, Princeton University,

Princeton, New Jersey.

Hampel, F.R. (1979). Letter to J. W. Tukey on suggestions

for additional possible corners.

Knuth, D. E.,(1969). The Art of Computer Programming

Vol. 2: Seminumerical Algorithms, Addison Wesley,

Reading, Massachusetts.

Krystinik, K. (1981). "Post-configural polysampling

pushback results," Technical Report No. 211,

Series 2, Department of Statistics, Princeton

University, Princeton, New Jersey.

Nanni, Louis F. (1979). Unpublished work in the pushback.

4



- 43 -

Owen, D.B. (1962). Handbook of Statistical Tables,

Addison-Wesley, Reading, Massachusetts.

Simon, G. (1975). "Swindles to improve computer .simulation,

with application to the problems of appraising

estimates of location and dispersion in univariate

samples," Technical Report No. 91, Series 2,

Department of Statistics, Princeton University,

Princeton, New Jersey.

7

I,



4DAp

FIME

3ko
-lo


